Are we close to multi-scale simultaneous (and robust) seismic imaging?

Biondo Biondi, Guillaume Barnier and Ettore Biondi
Stanford University, SEP
Scale separation in seismic imaging

From Jon Claerbout’s “Imaging the Earth Interior”
Gap is closing…

Accuracy

100%

Tomographic velocities

Low-frequency & long-offset data

Velocity

Reflectivity

$log \frac{vk}{2\pi}, \text{ Hz}$
We want to close the gap!
2014 SEG FWI Blind Test (3-35 Hz)

WET+FWI velocity

TFWI velocity

Presented at SEG 2014 Workshop
2014 SEG FWI Blind Test (3-35 Hz)

Image with FWI velocity Image with TFWI velocity

Presented at SEG 2014 Workshop
FWI vs. TFWI

FWI

\[J_{\text{FWI}}(v) = \frac{1}{2} \| \mathcal{L}(v) - d \|^2 \]

TFWI

\[J_{\text{TFWI}}(\tilde{v}) = \frac{1}{2} \| \tilde{\mathcal{L}}(\tilde{v}) - d \|^2 \pm \varepsilon \| \mathcal{F}(\tilde{v}) \|^2 \]

\(J \) is the objective function to optimize, \(\mathcal{L} \) is non-linear modeling operator, \(v \) is velocity model, \(d \) are data.

\(\tilde{\mathcal{L}}(\tilde{v}) \) is the extended modeling operator, \(\tilde{v} \) is the extended velocity, e.g. \(\tilde{v}(\tau) \), \(\mathcal{F}(\tilde{v}) \) measures focusing of \(\tilde{v} \), e.g. \(\| \tau \tilde{v} \|^2 \).

Symes, 2008 (Geophysical Prospecting)
Biondi and Almomin, 2014 (Geophysics)
Derivation of first-order Born scattering

Full non-linear scattering

\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] P_0 = f
\]
\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] \delta P = \delta v^2 \nabla^2 \left(P_0 + \delta P \right)
\]

\(v_0 \): Background velocity

\(P_0 \): Background wavefield

\(\delta v \): Velocity perturbation

\(\delta P \): Scattered wavefield

\(f \): Source function

First-order Born scattering

\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] P_0 = f
\]
\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] \hat{P} = \delta v^2 \nabla^2 P_0
\]

\(\hat{P} \): Born scattered wavefield
Transmission experiment ($t=1.4$ s)
Limitations of Born linearization

Wavefield and data residuals by full non-linear scattering

Wavefield and data residuals by first-order Born scattering
Linearized τ extension $\tilde{\mathcal{L}}(\tilde{\nu}) = \mathcal{L}(\nu_0) + \tilde{\mathcal{L}} \delta \tilde{\nu}^2(\tau)$

Full non-linear scattering

\[
\begin{align*}
[\partial_{tt} - v_0^2 \nabla^2] P_0 &= f \\
[\partial_{tt} - v_0^2 \nabla^2] \delta P &= \delta v^2 \nabla^2 (P_0 + \delta P)
\end{align*}
\]

v_0: Background velocity
P_0: Background wavefield
δv: Velocity perturbation
δP: Scattered wavefield
f: Source function

Linearized τ extension

\[
\begin{align*}
[\partial_{tt} - v_0^2 \nabla^2] P_0 &= f \\
[\partial_{tt} - v_0^2 \nabla^2] \delta \tilde{P} &= \delta \tilde{v}(\tau)^2 \ast \nabla^2 P_0
\end{align*}
\]

$\delta \tilde{v}(\tau)$: Extended-velocity perturbation
$\delta \tilde{P}$: New scattered wavefield
Linearized τ extension $\tilde{\mathcal{L}}(\tilde{v}) = \mathcal{L}(v_0) + \tilde{\mathcal{L}} \delta \tilde{v}^2(\tau)$

Full non-linear scattering

\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] P_0 = f
\]

\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] \delta P = \delta v^2 \nabla^2 (P_0 + \delta P)
\]

v_0: Background velocity

P_0: Background wavefield

δv: Velocity perturbation

δP: Scattered wavefield

f: Source function

Linearized τ extension

\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] P_0 = f
\]

\[
\left[\partial_{tt} - v_0^2 \nabla^2 \right] \delta \tilde{P} = \delta \tilde{v}(\tau)^2 \overset{*}{\nabla^2 P_0}
\]

$\delta \tilde{v}(\tau)$: Extended-velocity perturbation

$\delta \tilde{P}$: New scattered wavefield
Beyond Born – $\Delta \tilde{\nu}(\tau) = \tilde{L}' \Delta d$

Wavefield computed by full non-linear scattering

Wavefield by linearized τ extension with $\Delta \tilde{\nu}(\tau) = \tilde{L}' \Delta d$
Beyond Born – $\Delta \tilde{\nu}(\tau) = \tilde{L}' \Delta d$

Wavefield computed by full non-linear scattering

Wavefield by linearized τ extension with $\Delta \tilde{\nu}(\tau) = \tilde{L}' \Delta d$
Beyond Born $- \Delta \tilde{\nu}(\tau) = \tilde{L}' \Delta d$

Data residuals computed by full non-linear scattering

Data residuals by linearized τ extension with $\Delta \tilde{\nu}(\tau) = \tilde{L}' \Delta d$
Beyond Born $- \Delta \tilde{\nu} (\tau) = \tilde{\mathcal{L}}' \Delta d$

Data residuals computed by full non-linear scattering

$\tilde{\mathcal{L}}(v) \tilde{\mathcal{L}}'(v) \left[\mathcal{L}(v) - d \right] \approx \left[\mathcal{L}(v) - d \right]$

Data residuals by linearized τ extension with $\Delta \tilde{\nu} (\tau) = \tilde{\mathcal{L}}' \Delta d$
Practical TFWI algorithm

\[
\tilde{J}(v, \delta \tilde{v}) = \left\| \mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \right\|^2_2 + \varepsilon \left\| F \delta \tilde{v} \right\|^2_2
\]

Biondi and Almomin, 2014 (Geophysics)
Practical TFWI algorithm

$$\tilde{J}(v, \delta \tilde{v}) = \| \mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \|^2_2 + \varepsilon \| F \delta \tilde{v} \|^2_2$$

Inner loop – Estimate v and $\delta \tilde{v}$ with fixed v

Inner loop – Scale mixing between v and $\delta \tilde{v}$

Outer loop – Update v with low-pass of $\delta \tilde{v} + v$

Biondi and Almomin, 2014 (Geophysics)
IO-Jansz

NW Australia

Conventional streamer data

Ali Almomin’s thesis – SEP 164
Initial velocity
Image with initial velocity

Ali Almomin’s thesis – SEP 164
Image with TFWI velocity
CIGs with initial velocity

Ali Almomin's thesis – SEP 164
CIGs with TFWI velocity
“Variable Projection” algorithm

\[
\tilde{J}(v, \delta \tilde{v}) = \left\| \mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \right\|^2_2 + \varepsilon \left\| F \delta \tilde{v} \right\|^2_2
\]

Inner loop – Estimate \(\delta \tilde{v} \) with fixed \(v \) as:

\[
\delta \tilde{v} = \left[\tilde{L}'(v) \tilde{L}(v) + \varepsilon F'F \right]^{-1} \left[\mathcal{L}(v) - d \right]
\]

Outer loop – Update \(v \) by minimizing:

\[
\hat{J}(v) = \left\| \mathcal{L}(v) + \hat{L}(v) \delta \tilde{v} - d \right\|^2_2 + \varepsilon \left\| F \delta \tilde{v} \right\|^2_2
\]

Variable Projection algorithm: Golub and Pereyra, 1973 (SIAM)
Variable Projection for WI: van Leeuwen and Moulder, 2009 (EAGE), Huang and Symes, 2015 (SEG), …
Preconditioned “Variable Projection”

\[\tilde{J}(\mathbf{v}, \delta \tilde{\mathbf{v}}) = \| \mathcal{L}(\mathbf{v}) + \tilde{\mathbf{L}}(\mathbf{v}) \delta \tilde{\mathbf{v}} - \mathbf{d} \|_2^2 + \varepsilon \| F \delta \tilde{\mathbf{v}} \|_2^2 \]

Inner loop – Estimate \(\delta \tilde{\mathbf{v}} \) with fixed \(\mathbf{v} \) as:

\[\delta \tilde{\mathbf{v}} = \left[\tilde{\mathbf{L}}_p(\mathbf{v}) \tilde{\mathbf{L}}_p(\mathbf{v}) + \varepsilon \mathbf{I} \right]^{-1} \left[\mathcal{L}(\mathbf{v}) - \mathbf{d} \right] \]

Outer loop – Update \(\mathbf{v} \) by minimizing:

\[\hat{J}(\mathbf{v}) = \| \mathcal{L}(\mathbf{v}) + \tilde{\mathbf{L}}(\mathbf{v}) \delta \tilde{\mathbf{v}} - \mathbf{d} \|_2^2 + \varepsilon \| F \delta \tilde{\mathbf{v}} \|_2^2 \]

Related to M. Clapp’s thesis – SEP 122

G. Barnier, E. Biondi, and B. Biondi, 2017 (SEP 170)
Gradient with respect to V

\[
\hat{J}(v) = \left\| \mathcal{L}(v) + \mathcal{L}(v) \delta v - d \right\|^2_2 + \epsilon \left\| F \delta v \right\|^2_2
\]

\[
\nabla \hat{J} = \left[L'(v) + T'(v) \right] \left[\mathcal{L}(v) + \mathcal{L}(v) \delta v - d \right]
\]

where: $L(v)$ is the linearization of \mathcal{L} w.r.t. v,

$T(v)$ is the linearization of \mathcal{L} w.r.t. v.
Gradient with respect to V

$$\hat{J}(v) = \left\| \mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \right\|_2^2 + \epsilon \left\| F \delta \tilde{v} \right\|_2^2$$

Migration? Tomography?

$$\nabla \hat{J} = \left[L'(v) + T'(v) \right] \left[\mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \right]$$

where: $L(v)$ is the linearization of \mathcal{L} w.r.t. v, $T(v)$ is the linearization of \tilde{L} w.r.t. v.

G. Barnier, E. Biondi and B. Biondi, 2017 (SEP 170)
Without vs. With preconditioning: Mora’s model

True model

(True – Initial) model
Without vs. With preconditioning: Convergence

No preconditioning of F

With preconditioning of F
\[T'(v) \left[\mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \right] - 20 \text{ iterat. of inner loop} \]

No preconditioning of \(F \)

With preconditioning of \(F \)
\[T'(v) \left[\mathcal{L}(v) + \mathcal{L}(v) \hat{\delta}v - d \right] - 40 \text{ iterat. of inner loop} \]

No preconditioning of \(F \)
With preconditioning of \(F \)
$L'(v) \left[\mathcal{L}(v) + \hat{L}(v) \delta \hat{v} - d \right] - 20 \text{ iterat. of inner loop}$

No preconditioning of F

With preconditioning of F
\[L'(v) \left[\mathcal{L}(v) + \hat{L}(v) \delta \hat{v} - d \right] - 40 \text{ iterat. of inner loop} \]
$\left[L'(v) + T'(v) \right] \left[\mathcal{L}(v) + \tilde{L}(v) \delta \tilde{v} - d \right] : 20 \text{ iterations}$

No preconditioning of F

With preconditioning of F
\[
\left[L'(v) + T'(v) \right] \left[L(v) + \tilde{L}(v) \delta v - d \right] : 40 \text{ iterations}
\]
Without preconditioning of F

Inner loop: 40 iterations – Outer loop: 2 iterations

(Final – Initial) model
(True – Initial) model
With preconditioning of F

Inner loop: 40 iterations – Outer loop: 2 iterations

(Final – Initial) model (True – Initial) model
Conclusions

• We (as a community) are making progress towards multi-scale simultaneous (and robust) seismic imaging.
• Waveform inversion with (time) model extension have encouraging convergence properties, even in 3D field data problems.
• A “Preconditioned Variable Projection” algorithms is a promising new direction that may speed-up convergence and reduce computational cost.
Acknowledgments

• Ali Almomin (Aramco) for doing some of the work, and providing slides.

• Chevron for IO-Jansz data.

• Chevron for the SEG 2014 blind-test data.

• Stanford Exploration Project affiliate members for financial support

• Chevron for financial support of Stanford Center of Research Excellence.

• Stanford Center for Computational Earth and Environmental Science for computational support.
Beyond Born – Extended velocity

Horizontal section across anomaly

\[\delta \tilde{v}^2(\tau) \]
Beyond Born – Extended velocity

Vertical section across anomaly
Beyond Born – Data residuals

Wavefield and data residuals by full non-linear scattering

Wavefield and data residuals by linearized τ extension