FWI for Elastic Media - Macrovelocity reconstruction

Cheverda Vladimir, Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia

Chavent Guy, INRIA, France

Gadylyshin Kirill, Institute of Petroleum Geology and Geophysics
Kirill Gadylshin, IPGG SB RAS
Outline

1. Gullfaks model.
2. DSR-FWI modified formulation (MBTT).
3. Cross-talk for P- and S-wave interfaces.
4. Numerical experiments with Gullfaks model.
5. Conclusions and road map.
Outline

1. Gullfaks model.
2. DSR-FWI modified formulation (MBTT).
3. Cross-talk for P- and S-wave interfaces.
4. Numerical experiments with Gullfaks model.
5. Conclusions and road map.
In our numerical experiments we used 2D elastic version of Gullfaks oilfield on the Norwegian continental shelf, but without water on the top of the model.
Gullfaks model

Forward map: mathematical model
To describe isotropic elastic wave propagation we use velocity-stress formulation as first order system of PDE

\[
\begin{align*}
 i \omega M(x, z) \vec{U} - P \frac{\partial \vec{U}}{\partial x} - Q \frac{\partial \vec{U}}{\partial z} &= \vec{f} \\
 \vec{U} &= (U_x, U_z, \sigma_{xx}, \sigma_{zz}, \sigma_{xz})
\end{align*}
\]

\[
M = \begin{pmatrix} \rho I_{2x2} & 0 \\ 0 & S_{3x3} \end{pmatrix}, \quad P = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix},
\]

\[
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},
\]

\[
S = \begin{pmatrix} a & -b & 0 \\ -b & a & 0 \\ 0 & 0 & c \end{pmatrix}, \quad a = \frac{\lambda + 2\mu}{4\mu(\lambda + \mu)}, \quad b = \frac{\lambda}{4\mu(\lambda + \mu)}, \quad c = 1/\mu.
\]

S – compliance tensor
Gullfaks model

Forward map: boundary conditions

At this stage we cancel water layer at the top, fill it with elastic medium and introduce PML on all sides of the rectangle. Next we do finite-difference approximation of this boundary value problems and on this base introduce nonlinear operator transforming distribution of P-, S-wave velocities, density and source (position and function) to the data recorded on the given acquisition system:

\[F : m \rightarrow \tilde{U} \]
Gullfaks model

ABC (PML)
Gullfaks model: acquisition

• Frequency range: 5 – 25 Hz, 21 uniformly sampled frequencies;
• 39 vertical sources at the depth 20 m, sampled with 100 m from 100 m to 3900 m;
• 198 receivers at the same depth sampled with 20 m from 20 m to 3980 m.
Gullfaks elastic model: results
Gullfaks model

Initial approximation: 1D model
Gullfaks elastic model

Inversion (Vp)
Gullfaks elastic model

Inversion (Vs)
Gullfaks elastic model
Inversion (Vp/Vs)
Outline

1. Gullfaks model.
2. DSR-FWI modified formulation.
3. Cross-talk for P- and S-wave interfaces.
4. Numerical experiments with Gullfaks model.
5. Conclusions and road map.
DSR-FWI modified formulation

L_2 FWI misfit function (Tarantola et al., 1980-th)

$$E(m) = \frac{1}{2} \left\| d^{obs} - F(m) \right\|_D^2$$

Standard non-linear L_2 formulation of FWI:

$$E(m) \rightarrow \text{min}$$
Least Squares FWI: macrovelocity reconstruction (7 – 25 Hz)
Conventional Least Squares FWI: propagator?

From: (Gauthier, Virieux and Tarantola; 1986)
Can we change formulation of FWI to enhance sensitivity to propagator without low time frequencies?
DSR-FWI modified formulation: propagator / reflector decomposition

- The model \((V_p(x,z), V_s(x,z)) \) is decomposed to a smooth propagator and rough spatial reflectivity:
 \[
 V_p(x,z) = PV_p(x,z) + RV_p(x,z) \\
 V_s(x,z) = PV_s(x,z) + RV_s(x,z)
 \]

- Smooth propagators \(PV_p(x,z) \) and \(PV_s(x,z) \) do not (almost) produce return of the seismic energy back to the acquisition, but govern propagation time;

- Rough reflector \(RV_p(x,z) \) and \(RV_s(x,z) \) (almost) do not change propagation time, but change direction of seismic energy and send it back to acquisition.
DSR-FWI modified formulation: propagator / reflector decomposition (naive)
DSR-FWI modified formulation: propagator / reflector decomposition

For known propagator P, we parameterize spatial reflectivity R by data space reflectivity (DSR) s via some imaging operator

$$V_{p,s} = PV_{p,s} + RV_{p,s} = PV_{p,s} + MV_{p,s}(PV_{p,s}) < s >$$

Currently we use a weighted/true amplitude migration operator $MV_{p,s}(PV_{p},PV_{s})$ derived on the base of the adjoint state techniques:

$$MV_{S,P}(PV_{p},PV_{p}) < s > = W_{S,P}^{\circ} Re \left\{ \left(\frac{\partial F}{\partial V_{S,P}} \right)^{*} < s > \right\}$$
DSR-FWI modified formulation

On this base we reformulate the data misfit functional:

\[E(V_p, V_s) = \frac{1}{2} \left\| d^{obs} - F(V_p, V_s) \right\|^2_D, \]

as follows:

\[\tilde{E}(PV_p, PV_s; RV_p, RV_s) = \]

\[= \frac{1}{2} \left\| d^{obs} - F(PV_p + M_p(PV_p, PV_s) < s >, PV_s + M_s(PV_p, PV_s) < s >) \right\|^2_D \]
The main difference with standard L_2 Full Waveform Inversion:

- propagators are searched for in the **model space**;
- reflectivity is searched for in the **data space**.

$$\tilde{E}(PV_p, PV_s; M_p(PV_p, PV_s) < s >, M_s(PV_p, PV_s) < s >) \rightarrow \min_{PV_p, PV_s, s}$$
DSR-FWI modified formulation: Frechet derivative

Linearized standard FWI in the vicinity of some model m_0:

$$\frac{\delta F}{\delta m}(m_0) \langle \delta m \rangle = \delta d$$

Linearized with respect to propagator in the vicinity of the same model m_0:

$$\frac{\delta F}{\delta m}(m_0 + M(m_0) \langle s_{true} \rangle) \langle \delta p + W \circ \left((\delta^2 F(m_0) / \delta m^2) \langle ., \delta p \rangle \right)^* \langle s_{true} \rangle = \delta d$$

If data space reflectivity s_{true} is equal to zero, these derivatives are identical!
Outline

1. Gullfaks model.
2. DSR-FWI modified formulation.
3. Cross-talk for P- and S-wave interfaces.
4. Numerical experiments with Gullfaks model.
5. Conclusions and road map.
DSR-FWI modified formulation: cross-talk between Vp and Vs interfaces
Outline

1. Gullfaks model.
2. Modified FWI formulation.
3. Cross-talk for P- and S-wave interfaces.
4. Numerical experiments with Gullfaks model.
5. Conclusions and road map.
Strategy of non-linear inversion

The workflow of non-linear DSR-FWI (MBTT) modified inversion:

Stage 1: minimization with respect to data space reflectivity s

Stage 2: minimization with respect to propagator p

Stage 3: minimization with respect to data space reflectivity s

......... etc.
Numerical experiments: 2D elastic Gullfaks model

P-propagator recovery
Numerical experiments: 2D elastic Gullfaks model

Vp recovery
Numerical experiments: 2D elastic Gullfaks model

S-propagator recovery
Numerical experiments: 2D elastic Gullfaks model

Vs recovery
Numerical experiments: 2D elastic Gullfaks model

Vp/Vs recovery
Numerical experiments: 2D elastic Gullfaks model

Data comparison
Numerical experiments: 2D elastic Gullfaks model

Data comparison

[Graphs showing Uz true, Uz start, and Uz recovered data comparison]
Outline

1. Gullfaks model.
2. Modified FWI formulation.
3. Cross-talk for P- and S-wave interfaces.
4. Numerical experiments with Gullfaks model.
5. Conclusions and road map.
Conclusions

• Modification of multicomponent (elastic) FWI formulation on the base of Data Space Reflectivity is introduced and implemented;

• Numerical experiments prove advantages of this formulation for both V_p and V_s propagator reconstruction without of unreasonable low time frequencies, but at the moment without of free surface (no ground roll).
Road map

• Application of more effective minimization techniques in 2D elastic statement (Gauss-Newton, modified Newton,.....)
• 2D Elastic formulation for onshore seismic acquisition with free surface (ground roll consideration)
• 3D offshore with the base of 3D elastic direct solver (HSS): isotropy, anisotropy, viscoanisotropy...
Acknowledgements

The research is supported by Russian Science Foundation
THANK YOU FOR ATTENTION
Questions?